探索使用静脉输液(IV)过滤器截留内毒素的优势及相关解决方案
世界各地的医疗和制药部门普遍认为,一切用于患者血管内的器械和物质均须“无热原”或不含内毒素,因此无论患者的状态如何,我们均应保护患者免受外源性内毒素侵害。
有关内毒素对脓毒症病理生理影响的研究始于十九世纪,那时人们首次认定内毒素为一种革兰氏阴性细胞壁毒素,可能造成致死性休克。1 今天,以内毒素为主要引发因素的全身性革兰氏阴性脓毒症,仍然是使住院受试者病程复杂化的最严重疾病之一,主要发生在重症监护室 (ICU) 中的重症患者身上。2,3
化学结构分析表明,内毒素单位由类脂质 A 和 O 抗原组成。O 抗原由多糖组成,与免疫原性相关,而类脂质 A 则为毒性成分。4 免疫系统对类脂质 A 的反应可能导致严重的全身性炎症,临床表现为感染性休克伴多器官功能障碍,尤其是心肌抑制和肾功能损害。5 在 IV 治疗过程中,革兰氏阴性菌和相关内毒素可能从受污染器械或液体等外源进入患者的血液。6-13 以往便有过关于医院内静脉输注溶液中因存在内毒素而导致不良反应甚至死亡的报道。14-19
因此,这就是颇尔 Posidyne®IV过滤器发挥作用的地方 - 在 IV 治疗期间截留内毒素,防止其进入患者的血液。我们时长超过 96 小时的验证测试证实:
- 颇尔(老化和未老化)ELD96 IV过滤器截留了 > 99.9999 % 的内毒素,这些内毒素来自 0.9% 生理盐水中 1 x 108 的大肠杆菌;对于 > 1 x 103 EU/cm2 的平均输入水平,实现了输出浓度 < 0.1 EU/mL*(*测试的检出限 = 0.1 EU/mL)。20
- 颇尔(老化和未老化)NEO96 IV过滤器截留了 99.9999 % 的内毒素,这些内毒素来自 0.9% 生理盐水中 1 x 108 的大肠杆菌;对于 > 1 x 104 EU/cm2 的平均输入水平,实现了输出浓度 < 0.1 EU/mL*(*测试的检出限 = 0.1 EU/mL)。21
如果患者已经生病,患脓毒性休克或其他危重疾病,那么少量的内毒素是否会有影响?
是的,已经有研究表明,即使是小剂量的内毒素也会对人体产生临床影响。22,23
Posidyne IV过滤器能够为您带来以下优势
- 在临床相关条件下,可在长达 96 小时的时间内截留内毒素24-27
- 由于 IV 过滤器组的更换频率降低,人工和成本耗费减少28-30
- 提升临床疗效32-36
颇尔是技术的引领者,早已生产出带正电荷的、基于膜的 IV过滤器产品。这些过滤器能够去除细菌及相关内毒素,已为医疗保健领域服务逾四十年。
References
- Romaschin A.D., Klein D.J., Marshall JC. (2012). Bench-to-bedside review: Clinical experience with the endotoxin activity assay. Crit Care; 16 (6): 248
- Sakr Y, Jaschinski U, Wittebole X, et al. (2018). Sepsis in Intensive Care Unit Patients: Worldwide Data From the Intensive Care over Nations Audit. Open Forum Infect Dis;5 (12): 1-9
- Ianaro A, Tersigni M, D'Acquisto F. (2009) New insight in LPS antagonist. Mini Rev Med Chem; 9 (3):306-17.
- Sampath VP. (2018). Bacterial endotoxin-lipopolysaccharide; structure, function and its role in immunity in vertebrates and invertebrates. Agriculture and Natural Resources; 52 (2): 115-120
- Virzì G.M. et al. (2017). Endotoxin Effects on Cardiac and Renal Functions and Cardiorenal Syndromes. Blood Purif; 44: 314-326
- Twum-Danso K, Dawodu AH, Saleh M.A.F., Makiling L.S. (1989). An out-break of K. pneumoniae bacteremia in five children on intravenous therapy. J. Hosp. Infest; 14: 271–274.
- Ng P.C. et al. (1989). An outbreak of Acinetobacter septicaemia in a neonatal intensive care unit. Journal of Hospital Infection; 14: 363-368
- Lacey S. & Want S.V. (1991). Pseudomonas pickettii infections in a paediatric oncology unit. Journal of Hospital Infection; 17 (1): 45-51
- Ezzedine H. et al. (1994). An outbreak of Ochrobactrum anthropi bacteremia in five organ transplant patients. J Hosp Infect; 27: 35-42
- J.A.Frean, Arntzen L., Rosekilly I., Isaäcson M. (1994). Investigation of contaminated parenteral nutrition fluids associated with an outbreak of Serratia odorifera septicaemia. Journal of Hospital Infection; 27 (4): 263-273
- Bernards A.T. et al. (1997). Outbreak of septicaemia in neonates caused by Acinetobacter junii investigated by amplified ribosomal DNA restriction analysis (ARDRA) and four typing methods. Journal of Hospital Infection; 35 (2): 129-140
- Garland S.M. et al. (1996). Pseudomonas aeruginosa outbreak associated with a contaminated blood-gas analyser in a neonatal intensive care unit. Journal of Hospital Infection; 33: 145-151
- Holmes C.J. et al. (1980). Potential Hazards Associated with Microbial Contamination of In-Line Filters During Intravenous Therapy. Journal Of Clinical Microbiology; 12 (6): 725-7:31
- Garrett D.O. et al. (2002). An Outbreak of Neonatal Deaths in Brazil Associated with Contaminated Intravenous Fluids. The Journal of Infectious Diseases; 186 (1): 81–86
- Daufenbach, L. (2006). Pyrogenic Reactions and Hemorrhage Associated With Intrinsic Exposure to Endotoxin-Contaminated Intravenous Solutions. Infection Control & Hospital Epidemiology; 27 (7): 735-741
- Schroeder J. et al. (2015). Practically Saline. Journal of Investigative Medicine High Impact Case Reports; 1-4
- CDC (1998). Endotoxin-Like Reactions Associated with Intravenous Gentamicin -- California, 1998. Retrieved from: https://www.cdc.gov/mmwr/preview/mmwrhtml/00055322.htm
- Johnstone T. et al. (2018). Seven cases of probable endotoxin poisoning related to contaminated glutathione infusions. Epidemiol Infect. 2018;146(7):931-934. doi:10.1017/S0950268818000420
- Patel AS, et al. (2006) Outbreak of systemic inflammatory response syndrome linked to a compounding pharmacy – Virginia, 2005 In. 55th Annual Epidemic Intelligence Service Conference. Atlanta, Georgia, USA: U.S. Department of Health and Human Services.
- Ragunath S. & Spiers S. (2021). Evaluation of endotoxin retention efficiency of Pall ELD96 IV filters with 0.2 µm Posidyne® membrane over a 96-hour period; Pall Technical Report
- Ragunath S. & Spiers S. (2021). Evaluation of endotoxin retention efficiency of Pall NEO96 IV filters with 0.2 µm Posidyne® membrane over a 96-hour period; Pall Technical Report
- Suffredini A.F., Hochstein H.D., McMahon F.G. (1999). Dose-related inflammatory effects of intravenous endotoxin in humans: evaluation of a new clinical lot of Escherichia coli O:113 endotoxin. J Infect Dis; 179 (5): 1278-82
- Bahador M., Cross A.S. (2007). From therapy to experimental model: a hundred years of endotoxin administration to human subjects. Journal of Endotoxin Research; 13 (5): 251-279
- Baumgartner, T. G. et al. (1986). Bacterial endotoxin retention by inline intravenous filters. Am. J. Hosp. Pharm; 43:681-684
- Horibe, K. et al. (1990). Evaluation of the endotoxin retention capabilities of inline intravenous filters. JPEN J. Parenter. Enteral. Nutr; 14: 56-59
- Richards, C. & Grassby P. F. (1994). A comparison of the endotoxin-retentive abilities of two ‘96-h’ in-line intravenous filters. J. Clin. Pharm. Ther; 19 (3): 199-202
- Spielberg, R., and J. Martin. 1985. Evaluation of the endotoxin/bacterial retention of I.V. filters during simulated extended infusions, p. 1001. In Technical note IV. Pall Biomedical Ltd., Portsmouth, United Kingdom.
- Villa G. et al. (2020). In-line filtration reduced phlebitis associated with peripheral venous cannulation: Focus on cost-effectiveness and patients' perspectives. J Vasc Access; 21(2): 154-160
- Van den Hoogen A. et al. (2006). In-line filters in central venous catheters in a neonatal intensive care unit. J Perinat Med; 34(1): 71-4
- Van Lingen et al. (2004). The use of in-line intravenous filters in sick newborn infants. Acta Paediatr; 93(5): 658-62
- Unger-Hunt L. (2019). Reducing Risks and Generating Economic Benefits. Health Management; 19 (4): 286-287
- Jack T. et al. (2012). In-line filtration reduces severe complications and length of stay on pediatric intensive care unit: a prospective, randomized, controlled trial. Intensive Care Med; 38(6): 1008-16
- Boehne M. et al. (2013). In-line filtration minimizes organ dysfunction: New aspects from a prospective, randomized, controlled trial. BMC Pediatrics; 13 (21): 1-8
- Sasse M. et al. (2015). In-line Filtration Decreases Systemic Inflammatory Response Syndrome, Renal and Hematologic Dysfunction in Pediatric Cardiac Intensive Care Patients. Pediatr Cardiol; 36: 1270-1278
- Villa G. et al. (2018). In-Line Filtration Reduces Postoperative Venous Peripheral Phlebitis Associated With Cannulation: A Randomized Clinical Trial. Anesth Analg; 127(6): 1367-1374
- Virlouvet A.L. et al. (2020). In-line filtration in very preterm neonates: a randomized controlled trial. Scientific Reports; 10 (5003): 1-8
1892 年,德国医生兼细菌学家 Richard Pfeiffer 与柏林传染病研究所的 Robert Koch 合作,首创了“内毒素”一词,并提出“该产毒素菌是由细菌分解释放出的一种因子引起的”。通过这项研究,Richard Pfeiffer 提出“内毒素是一种毒素,在微生物的生命过程中,与细菌细胞紧密结合,且只有在细菌死亡后才会释放出来,产生致病效果”。
今天,内毒素被定义为存在于革兰氏阴性菌外膜中的、有毒的热稳定性脂多糖物质,在细胞裂解时被释放出来。2 因此,内毒素也被称为脂多糖或 LPS。与革兰氏阴性菌相反,革兰氏阳性菌不产生内毒素,因为这些细菌没有外细胞膜。化学结构分析表明,内毒素单位由以下部分组成:
- 脂肪(称为类脂质 A)和
- 糖类(即多糖)。
内毒素的类脂质 A 为毒性成分,而 O 抗原则由多糖组成,与免疫原性相关。3
References
- Rietschel E. T. & Cavaillon J.M. (2002). Endotoxin and anti-endotoxin: The contribution of the schools of Koch and Pasteur: Life, milestone-experiments and concepts of Richard Pfeiffer (Berlin) and Alexandre Besredka (Paris). Journal of Endotoxin Research; 8 (2): 71-82
- Merriam-Webster (2021, August 18). Endotoxin. Retrieved from https://www.merriam-webster.com/dictionary/endotoxin
- Sampath VP. (2018). Bacterial endotoxin-lipopolysaccharide; structure, function and its role in immunity in vertebrates and invertebrates. Agriculture and Natural Resources; 52 (2): 115-120
2008 年至 2018 年的数据显示,仅在美国医院,美国疾病控制中心 (CDC) 估计的年院内感染 (HAI) 数便达到约 170 万例,导致约 98,000 人死亡。1,2 其中,几乎三分之一的 HAI 和 60% 的重症监护室 HAI 由革兰氏阴性菌引起。3 此外,由于对抗生素的高耐药性,革兰氏阴性菌已成为全球最严重的公共卫生问题之一。4 革兰氏阴性菌感染包括由克雷伯菌、不动杆菌、铜绿假单胞菌、大肠杆菌以及许多其他不常见细菌引起的感染。4
References
- Haque M, Sartelli M, McKimm J, Abu Bakar M. (2018). Health care-associated infections - an overview. Infect Drug Resist;11:2321-2333.
- Agarwal M., Shiau S., Larson E.L. (2008). Repeat gram-negative hospital-acquired infections and antibiotic susceptibility: A systematic review. Journal of Infection and Public Health; 11(4): 455-462
- Oliveira J, Reygaert WC. Gram Negative Bacteria. [Updated 2021 Mar 29]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK538213/
- CDC [Updated 2011 January 17]. Gram-negative Bacteria Infections in Healthcare Settings. Available from: https://www.cdc.gov/hai/organisms/gram-negative-bacteria.html
内毒素产生的临床影响包括:1,2
- 发烧、头痛、发冷
- 心脏功能(心肌收缩力)衰竭,导致试图维持血液循环的心动过速
- 血管内凝血,导致血管闭塞(循环受阻)
- 血管扩张(血管舒张),导致血压下降(低血压)
- 血管内壁受损(内皮通透性增加),导致血液从血管渗漏到周围组织中(水肿)
- 向组织输送的氧气减少(灌注减少)
- 在最糟糕的情况下,心脏无法将血液泵送到整个系统、血压下降、无法实现大面积的循环(尤其是在那些需要高血流量的器官中),以及组织无法获得足够的氧气。
由于上述原因,肾脏、肺、心脏和大脑的功能可能会逐渐丧失,导致多器官功能衰竭,并最终导致死亡。
已经有研究表明,即使是小剂量的内毒素也会对人体产生影响。通过对健康志愿者进行的实验发现,每公斤体重 2-4 纳克内毒素的剂量便会产生不良影响。这相当于每 kg 体重 20-40 个内毒素单位 (EU)。在这个水平上,受试者出现发烧、心率加快、头痛、发冷、四肢酸痛等症状,同时心脏功能显著下降、血压升高、白细胞数增多、炎症因子升高、肠道通透性增加且凝血系统激活。3-10
References
- Glauser M.P., Zanetti G., Baumgartner J.D., Cohen J. (1991). Septic shock: pathogenesis. Lancet; 338 (8769): 732-6
- Balk R.A. (1994). Septic shock: pathophysiology. Current Opinion in Anesthesiology; 7(2): 136-140
- Fullerton J.N. et al. (2016). Intravenous Endotoxin Challenge in Healthy Humans: An Experimental Platform to Investigate and Modulate Systemic Inflammation. J Vis Exp; (111): 53913
- Calvano SE, Coyle SM. (2012): Experimental human endotoxemia: a model of the systemic inflammatory response syndrome? Surgical infections;13(5): 293–299
- Bahador M., Cross A.S. (2007). From therapy to experimental model: a hundred years of endotoxin administration to human subjects. Journal of Endotoxin Research; 13 (5): 251-279
- Suffredini A.F., Hochstein H.D., McMahon F.G. (1999). Dose-related inflammatory effects of intravenous endotoxin in humans: evaluation of a new clinical lot of Escherichia coli O:113 endotoxin. J Infect Dis; 179 (5): 1278-82
- Suffredini A.F. et al. (1989). The Cardiovascular Response of Normal Humans to the Administration of Endotoxin. N Engl J Med; 321: 280-287
- Casale TB et al. (1990). The effects of intravenous andutoxin on various host-effector molecules. J Allergy Clinical Immunology; 85: 45-51
- Suffredini A.F., Harpel P.C., Parrillo J.E. (1989). Promotion and Subsequent Inhibition of Plasminogen Activation after Administration of Intravenous Endotoxin to Normal Subjects. N Engl J Med; 320: 1165-1172
- Gralnick H.R. et al. (1989). Von Willebrand factor release induced by endotoxin. J Laboratory Clinical Medicine; 113 (1): 118-122
是的,存在。对药品的内毒素限制为:为使药品获得放行以上市销售,药品的内毒素水平不得达到或超过特定内毒素浓度。对于注射用药品,《美国药典》(USP) <85> 给出的内毒素限值方程为:1,2
内毒素限值 = K/M
对于除鞘内注药以外的一切非肠道给药,K = 5 EU/kg 体重,这是按每 kg 体重多少内毒素单位计算的阈致热量。
M = 推荐的、基于患者体重 (kg) 的最大单次给药剂量;连续输注时,M = 单个小时内的最大总给药剂量。
示例
也就是说,如果患者的体重为 70 kg,则相应的内毒素单位限值为 350 EU。那么,如果推荐的最大单次给药剂量为 2 mL,则内毒素限值应为药液的内毒素浓度小于 175 EU/mL;如果推荐的 1 小时(连续静脉输注时间)内最大总给药剂量为 1 L,那么内毒素限值则应为药液的内毒素浓度小于 0.35 EU/mL。
如果对于体重为 10 kg 的患者,推荐的最大单次给药剂量为 2 mL,则内毒素限值应为药液的内毒素浓度小于 25 EU/mL。
如何检测输注溶液中的内毒素?
鲎变形细胞溶解物 (LAL) 试验会用到鲎的血液提取物,在有内毒素的情况下,鲎血液会迅速凝结。大约 30 年来,LAL 试验一直广泛用于检测注射性药物及相关医疗器械中的内毒素,以保证其质量。3
References
- Dawson M. (2017). ENDOTOXIN LIMITS For Parenteral Drug Products. BET White Paper; 1 (2): 1-7
- USP [Updated 2017 February 25]. <85> Bacterial Endotoxins. Available from: https://www.usp.org/harmonization-standards/pdg/general-methods/bacterial-endotoxins
- Ding J.L. & Ho B. (2010). Endotoxin detection - from limulus amebocyte lysate to recombinant factor C. Subcell Biochem; 53: 187-208
以往的研究表明,革兰氏阴性菌可以繁殖,并且会在静脉输注溶液中释放出内毒素。1-3 意外输注被内毒素污染的非无菌液体的情况可能很少见,但以往确实有过关于医院内静脉输注溶液中存在内毒素而导致不良反应甚至死亡的报道。4-9
我们的测试:内毒素在静脉输注溶液中的积累
我们曾在 96 小时内监测大肠杆菌的浓度和相应的内毒素水平,我们采用的是受 1 x 108 CFU 大肠杆菌污染的 1 L 0.9 % 的生理盐水或 1 L AKE 1100(混有 Xylit ,Fresenius Kabi)。
下表示出了在时间 0 点和在环境温度下储存 96 小时过程中检测的溶液内大肠杆菌浓度 (CFU/mL)(内部数据)。虽然在 96 小时内生理盐水中每 mL 内毒素单位数保持相对恒定,但在肠外营养液中每 mL 内毒素单位数却一直在增加,增加的速率大约为:
- 24 小时后增加 10 倍,
- 48 小时后增加 100 倍,
- 72 小时后增加 1,000 倍,
- 最后在 96 小时后增加 > 1,000 倍(已高于测试极限)。
(A) T(0h) 和 T(96h) 的平均总计数 (CFU/mL) | |||||
---|---|---|---|---|---|
时间 (h) | 0 | 24 | 48 | 72 | 96 |
0.9 % 生理盐水中的平均细菌数 | 9.14 x 103 | N/A | N/A | N/A | 1.62 x 102 |
AKE 1100 中的平均细菌数 | 9.14 x 103 | N/A | N/A | N/A | 5.20 x 107 |
(B) 随时间变化的内毒素浓度 (EU/mL) | |||||
时间 (h) | 0 | 24 | 48 | 72 | 96 |
0.9 % 生理盐水中的内毒素单位数 | 1.54 | 1.54 | 1.22 | 2.2 | 0.91 |
AKE 1100 中的内毒素单位数 | 1.5 | 13.2 | 95.6 | 1.75 x 103 | >5.00 x 103 |
References
- Holmes C.J. et al. (1980). Potential Hazards Associated with Microbial Contamination of In-Line Filters During Intravenous Therapy. Journal of Clinical Microbiology; 12 (6): 725-731
- Trautmann M. et al. (1997). Bacterial colonization and endotoxin contamination of intravenous infusion fluids. J Hosp Infect; 37(3): 225-36
- Jorgensen J.H. and Smith R.F. (1973). Rapid detection of contaminated intravenous fluids using the Limulus in vitro endotoxin assay. Appl Microbiol; 26 (4): 521-524
- Garrett D.O. et al. (2002). An Outbreak of Neonatal Deaths in Brazil Associated with Contaminated Intravenous Fluids. The Journal of Infectious Diseases; 186 (1): 81–86
- Daufenbach, L. (2006). Pyrogenic Reactions and Hemorrhage Associated With Intrinsic Exposure to Endotoxin-Contaminated Intravenous Solutions. Infection Control & Hospital Epidemiology; 27 (7): 735-741
- Schroeder J. et al. (2015). Practically Saline. Journal of Investigative Medicine High Impact Case Reports; 1-4
- CDC (1998). Endotoxin-Like Reactions Associated with Intravenous Gentamicin -- California, 1998. Retrieved from: https://www.cdc.gov/mmwr/preview/mmwrhtml/00055322.htm
- Johnstone T. et al. (2018). Seven cases of probable endotoxin poisoning related to contaminated glutathione infusions. Epidemiol Infect. 2018;146(7):931-934. doi:10.1017/S0950268818000420
- Patel AS, et al. (2006) Outbreak of systemic inflammatory response syndrome linked to a compounding pharmacy – Virginia, 2005 In. 55th Annual Epidemic Intelligence Service
许多药液的给药时间均长于 24 小时。那么,就内毒素而言,临床从业者是否应该关注 IV过滤器的安全性?
答案是肯定的。Holmes 等人执行的一项体外研究模拟了细菌在模拟输液过程中的生长,并研究了不带电荷的、0.22 µm IV过滤器在 72 小时内截留细菌(聚集性芽胞杆菌、粘质沙雷菌、克雷伯氏肺炎菌和铜绿假单胞菌)及其相关内毒素的能力。1
研究表明,虽然革兰氏阴性菌在 IV过滤器上游的溶液中增殖,但在 72 小时内经过 0.22 µm IV过滤器的过滤,并无细菌最终到达下游。然而,对于研究涉及的所有 4 种革兰氏阴性菌,在 24 至 48 小时这段时间内,均在 IV过滤器的下游检测到了内毒素,因此研究人员得出结论:“为避免终端过滤的这种潜在危害,应每 24 小时更换一次过滤器。”
但遗憾的是,每 24 小时更换一次 IV过滤器会带来高昂的成本、耗费大量的人力,并且大量的装置操作反而可能引入细菌污染风险。2-7 因此,可以说延长 IV 管路给药套件(带除内毒素过滤器)的单次运行时间肯定会大大降低成本及时间耗费,而且由于对 IV 管路的操作减少,也从充分降低了细菌污染风险。8
References
- Holmes C.J. et al. (1980). Potential Hazards Associated with Microbial Contamination of In-Line Filters During Intravenous Therapy. Journal of Clinical Microbiology; 12 (6): 725-731
- Stromberg G, Wahlgren J. (1989). Saving money with effective inline filters. Intens Care Nurs; 5 (109)
- Barber N, Jacklin A. (1987). CCU drug costs—the pharmacists’ role. Int Care World; 4 (80)
- Ballard K. (1990)Showing where the money goes: cost-effective care in ICU. Prof Nurse: 565
- Clarke R. (1990). A cost-effective system for TPN. Nurs Times; 86: 65
- Puntis JWL, Booth IW. (1990). The place of a nutritional care team in paediatric parctice. Intens Ther Clin Monitor; 11 (132)
- Cousins D. (1988). Cost savings in IV therapy. Care Crit Ill; 4 (1)
- Bethune K. et al. (2001). British Pharmaceutical Nutrition Group Working Party. Use of filters during the preparation and administration of parenteral nutrition: position paper and guidelines prepared by a British pharmaceutical nutrition group working party. Nutrition; 17 (5): 403-8
从理论上来说,我们应该期望一切拟用于输液管路 24 小时以上的 IV过滤器均经得起验证,以证明其能够截留输注管路中的内毒素。为此,有多项研究均评估了模拟临床输注过程中 0.2 µm 过滤器的内毒素截留特性。这些研究表明,在相关测试条件下,不同过滤器截留内毒素的能力存在明显差异。1-4
颇尔早已生产出带正电荷、基于膜的 IV 过滤器产品。这些过滤器能够在长达 96 小时的运行时间内去除细菌及相关内毒素,截至目前已为医疗保健领域服务逾四十年。
从细胞中脱落的内毒素聚集体为带有高负电荷的粒子。因此,以适当的密度和配置在滤膜中整合正电荷可以实现内毒素聚集体截留。但需注意的是,引入正电荷并不能自动保证可靠的内毒素截留,因此还有必要作广泛测试。
内毒素含有暴露的磷酸基团。通常,在 pH 值高于 2 时,这些磷酸基团带强负电荷。 静脉输注 (IV) 溶液的 pH 值高于此值,因此我们带正电荷的 IV过滤器便能够滤除带负电荷的内毒素。
References
- Baumgartner, T. G. et al. (1986). Bacterial endotoxin retention by inline intravenous filters. Am. J. Hosp. Pharm; 43:681-684
- Horibe, K. et al. (1990). Evaluation of the endotoxin retention capabilities of inline intravenous filters. JPEN J. Parenter. Enteral. Nutr; 14: 56-59
- Richards, C. & Grassby P. F. (1994). A comparison of the endotoxin-retentive abilities of two ‘96-h’ in-line intravenous filters. J. Clin. Pharm. Ther; 19 (3): 199-202
- Spielberg, R. & J. Martin. (1985). Evaluation of the endotoxin/bacterial retention of I.V. filters during simulated extended infusions, p. 1001. In Technical note IV. Pall Biomedical Ltd., Portsmouth, United Kingdom.
过去 40 年来,诸多公开资料显示,颇尔带 Posidyne 膜的 IV过滤器不仅能在实验室条件下截留内毒素,也能在临床条件下截留内毒素。1-7
此外,颇尔科学与实验室服务 (SLS) 部已利用大肠杆菌,测试了我们带 Posidyne 膜的 IV过滤器。大肠杆菌为一种临床相关生物体,能够导致内毒素产生。
颇尔 ELD96 和 NEO96 Posidyne IV过滤器为除气过滤器,带有 0.2 µm Posidyne 膜,单次使用时间长达 96 小时。这两款过滤器可结合任意给药套件装置使用,用于去除无意中造成的颗粒碎片、微生物污染物以及其相关内毒素和夹带的空气(这些全都可能存在于拟作静脉或皮下给药的药液中)。
在长达 96 小时的时间内评估颇尔带 0.2 µm Posidyne® 膜的 ELD96 IV 过滤器的内毒素截留效率。
颇尔(老化和未老化)ELD96 Posidyne IV过滤器截留了 > 99.9999 % 的内毒素,这些内毒素来自溶液中 1 x 108 的大肠杆菌;对于 > 1 x 103 EU/cm2 的平均输入水平,实现了输出浓度 < 0.1 EU/mL。
在长达 96 小时的时间内评估颇尔带 0.2 µm Posidyne® 膜的 NEO96 Posidyne IV 过滤器的内毒素截留效率。
颇尔(老化和未老化)NEO96 Posidyne IV过滤器截留了 > 99.9999 % 的内毒素,这些内毒素来自溶液中 1 x 108 的大肠杆菌;对于> 1 x 104 EU/cm2 的平均输入水平,实现了输出浓度 < 0.1 EU/mL。
References
- Baumgartner, T. G. et al. (1986). Bacterial endotoxin retention by inline intravenous filters. Am. J. Hosp. Pharm; 43:681-684
- Horibe, K. et al. (1990). Evaluation of the endotoxin retention capabilities of inline intravenous filters. JPEN J. Parenter. Enteral. Nutr; 14: 56-59
- Richards, C. & Grassby P. F. (1994). A comparison of the endotoxin-retentive abilities of two ‘96-h’ in-line intravenous filters. J. Clin. Pharm. Ther; 19 (3): 199-202
- Richards C, Thomas P. (1990). Use of endotoxin retentive intravenous filters with paediatric total parenteral nutrition solutions. J Clin Pharm Ther;15(1): 53-8
- Vanhaecke E., De Muynck C., Remon J.P., Colardyn F. (1989). Endotoxin removal by end-line filters. J Clin Microbiol; 27(12):2710-2.
- Barnett M.L., Cosslett A.G. (1996). Endotoxin Retention Capabilities of Positively Charged Nylon and Positively Charged Polysulphone Membrane Intravenous Filters. Pharmacy and Pharmacology Communications; 2 (7): 319-320
- Ortolano G. et al. (2009). Bacterial Lipopolysaccharide Retention by a Positively Charged Filter. Applied and Environmental Microbiology 75 (4): 1219
内毒素可经由带非正电荷的 IV 过滤器所捕获的革兰氏阴性菌或受污染器械或 IV 液体等外源进入 ICU 患者的血液。
将 IV过滤器的单次使用时间从 24 小时延长至 96 小时
首先,只有能够截留内毒素的 IV 过滤器,才能用于安全过滤超 24 小时。研究表明,颇尔 Posidyne IV过滤器能够在临床相关条件下截留内毒素。1-4 通过将 IV过滤器的单次使用时间延长至 96 小时,可帮助 ICU 工作人员大大减少潜在污染。
造福于贵院的 ICU 患者
多项研究已经表明,即使是小剂量的内毒素也会对人体产生临床影响。5 但如果患者已经生病,患脓毒性休克或其他危重疾病,那么少量的内毒素是否会有影响?
世界各地的医疗和制药部门普遍认为,一切用于患者血管内的器械和物质均须“无热原”或不含内毒素,因此无论患者的状态如何,我们均应保护患者免受外源性内毒素侵害。事实上,对于患有凝血障碍、炎症或心功能不全的患者,额外的内毒素不但不会有任何好处,反而会带来沉重的负担。
为贵院节省成本
如果采用 0.2 µm 除内毒素 IV过滤器,定能为您大大节省时间和成本,因为目前颇尔 IV过滤器及相关给药套件的单次使用时间已能达到 96 小时。最近,已有多项研究对相应的具体节省情况作了报告。6-10
References
- Baumgartner, T. G. et al. (1986). Bacterial endotoxin retention by inline intravenous filters. Am. J. Hosp. Pharm; 43:681-684
- Horibe, K. et al. (1990). Evaluation of the endotoxin retention capabilities of inline intravenous filters. JPEN J. Parenter. Enteral. Nutr; 14: 56-59
- Richards, C. & Grassby P. F. (1994). A comparison of the endotoxin-retentive abilities of two ‘96-h’ in-line intravenous filters. J. Clin. Pharm. Ther; 19 (3): 199-202
- Spielberg, R. & J. Martin. (1985). Evaluation of the endotoxin/bacterial retention of I.V. filters during simulated extended infusions, p. 1001. In Technical note IV. Pall Biomedical Ltd., Portsmouth, United Kingdom.
- Suffredini A.F., Hochstein H.D., McMahon F.G. (1999). Dose-related inflammatory effects of intravenous endotoxin in humans: evaluation of a new clinical lot of Escherichia coli O:113 endotoxin. J Infect Dis; 179 (5): 1278-82
- Villa G. et al. (2020). In-line filtration reduced phlebitis associated with peripheral venous cannulation: Focus on cost-effectiveness and patients' perspectives. J Vasc Access; 21(2): 154-160
- Van den Hoogen A. et al. (2006). In-line filters in central venous catheters in a neonatal intensive care unit. J Perinat Med; 34(1): 71-4
- Van Lingen et al. (2004). The use of in-line intravenous filters in sick newborn infants. Acta Paediatr; 93(5): 658-62
- Jack T. et al. (2012). In-line filtration reduces severe complications and length of stay on pediatric intensive care unit: a prospective, randomized, controlled trial. Intensive Care Med; 38(6): 1008-16
- Unger-Hunt L. (2019). Reducing Risks and Generating Economic Benefits. Health Management; 19 (4): 286-287
颇尔科学与实验室服务 (SLS) 部的技术专家具有丰富的技术经验和专业知识,可随时为您提供支持,给予您静脉输注过滤及输液解决方案方面的有效建议,或助您开展药物相容性研究。
颇尔临床专家专为希望使用颇尔静脉输液、呼吸和气体过滤设备的客户提供支持。他们可帮助客户在医院及患者床边部署颇尔产品并提供评估支持,就可能出现的任何问题提出建议。